Inequalities for surface integrals of non-negative subharmonic functions

نویسندگان

  • M. P. Aldred
  • D. H. Armitage
چکیده

Let H denote the class of positive harmonic functions on a bounded domain Ω in R . Let S be a sphere contained in Ω, and let σ denote the (N − 1)-dimensional measure. We give a condition on Ω which guarantees that there exists a constant K, depending only on Ω and S, such that R S u dσ ≤ K R ∂Ω udσ for every u ∈ H∩C(Ω). If this inequality holds for every such u, then it also holds for a large class of non-negative subharmonic functions. For certain types of domains explicit values for K are given. In particular the classical value K = 2 for convex domains is slightly improved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Integral Inequalities of Hermite-Hadamard Type for Multiplicatively s-Preinvex Functions

In this paper, we establish integral inequalities of Hermite-Hadamard type for multiplicativelys-preinvex functions. We also obtain some new inequalities involving multiplicative integralsby using some properties of multiplicatively s-preinvex and preinvex functions.

متن کامل

General Minkowski type and related inequalities for seminormed fuzzy integrals

Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.

متن کامل

On Generalizations of Hadamard Inequalities for Fractional Integrals

Fej'{e}r  Hadamard  inequality is generalization of Hadamard inequality. In this paper we prove certain Fej'{e}r  Hadamard  inequalities for $k$-fractional integrals. We deduce Fej'{e}r  Hadamard-type  inequalities for Riemann-Liouville fractional integrals. Also as special case Hadamard inequalities for $k$-fractional as well as fractional integrals are given.

متن کامل

The Sugeno fuzzy integral of concave functions

The fuzzy integrals are a kind of fuzzy measures acting on fuzzy sets. They can be viewed as an average membershipvalue of fuzzy sets. The value of the fuzzy integral in a decision making environment where uncertainty is presenthas been well established. Most of the integral inequalities studied in the fuzzy integration context normally considerconditions such as monotonicity or comonotonicity....

متن کامل

Some new results using Hadamard fractional integral

Fractional calculus is the field of mathematical analysis which deals with the investigation and applications of integrals and derivatives of arbitrary order. The purpose of this work is to use Hadamard fractional integral to establish some new integral inequalities of Gruss type by using one or two parameters which ensues four main results . Furthermore, other integral inequalities of reverse ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010